

Impact of γ -Amino Acid Residue Preorganization on α/γ -Peptide Foldamer Helicity in Aqueous Solution

Brian F. Fisher and Samuel H. Gellman*

Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States

Supporting Information

ABSTRACT: α/γ -Peptide foldamers containing either γ^4 amino acid residues or ring-constrained y-amino acid residues have been reported to adopt 12-helical secondary structure in nonpolar solvents and in the solid state. These observations have engendered speculation that the seemingly flexible γ^4 residues have a high intrinsic helical propensity and that residue-based preorganization may not significantly stabilize the 12-helical conformation. However, the prior studies were conducted in environments that favor intramolecular H-bond formation. Here, we use 2D-NMR to compare the ability of γ^4 residues and cyclic γ residues to support 12-helix formation in more challenging environments, methanol and water. Both γ residue types support 12-helical folding in methanol, but only the cyclically constrained γ residues promote helicity in water. These results demonstrate the importance of residue-based preorganization strategies for achieving stable folding among short foldamers in aqueous solution.

T he study of unnatural oligomers that display biopolymerlike folding behavior offers a framework for interrogating relationships between covalent and noncovalent structure (constitution and conformation) in a way that transcends the deep understanding that has emerged from analysis of proteins and nucleic acids. For example, examination of "foldamers" that contain β -amino acid residues instead of or in addition to α residues (i.e., β -peptides or α/β -peptides) has revealed the strong influence of small-ring constraints on the identity and stability of H-bond-mediated secondary structure.¹ This issue is not pertinent to the folding of conventional polypeptides, containing exclusively α residues, because imposition of a cyclic constraint necessarily abolishes backbone H-bond potential and disrupts common secondary structures, as seen with proline residues.²

Insights gained from experimental correlations among residue identity, secondary structure, and conformational stability have proven invaluable in the development of functional foldamers containing β residues. Stabilization of the β -peptide 14-helix by *trans*-cyclohexyl residues, for example, enabled development of a foldamer catalyst³ and fundamental single-molecule studies of hydrophobic interactions.⁴ Stabilization of α/β -peptide helices by *trans*-cyclopentyl residues has allowed the refinement of protein—protein interaction antagonists.⁵ These functional outcomes with β -containing foldamers highlight the importance of elucidating relationships between residue structure and conformational stability in other foldamer classes. Here we evaluate the impact of a specific cyclic constraint on helical secondary structure formed by α/γ -peptides.

Peptidic foldamers containing γ residues have been examined in many laboratories,⁶ but only a few studies⁷ have evaluated the relationships between γ residue structure and conformational stability. The α/γ -peptide 12-helix is probably the most extensively studied secondary structure in this foldamer class. This conformation, formed by oligomers with sequentially alternating α and γ residues, is defined by 12-atom C=O(i) \rightarrow H-N(i+3) H-bonds between backbone amide groups. The α/γ peptide 12-helix was initially observed by Balaram et al. in crystal structures of achiral oligomers containing gabapentin (Gpn) and α -aminoisobutyric acid (Aib) residues.^{8,9} Guo et al. developed an efficient asymmetric synthesis leading to trisubstituted γ -amino acid residue I (Figure 1) and showed that α/γ -peptides

containing I form the 12-helix in chloroform (based on NOE analysis) and in the crystalline state.¹⁰ The cyclic constraint and substitution pattern of I should limit conformational freedom. In particular, the C α -C β and C β -C γ bonds are predicted to favor a g^+,g^+ torsion angle sequence, as required for the 12-helix; this prediction is consistent with the many crystal structures of foldamers containing residue I.¹¹

The groups of Gopi¹² and Balaram¹³ have reported a large set of crystal structures showing that α/γ -peptides containing exclusively γ^4 residues (Figure 1) (4- to 16-mers) can adopt the 12-helix. In these structures the $C\alpha$ - $C\beta$ and $C\beta$ - $C\gamma$ torsion angles favor a g^+,g^+ torsion sequence similar to that observed in 12-helices containing residue I. Balaram et al. further demonstrated via 2D NMR that 12-helicity is maintained by a 16-mer α/γ -peptide in chloroform.^{13b} These findings are striking because one would predict γ^4 residues to be much more flexible than is γ residue I. As Balaram et al. noted, the extensive structural results with α/γ^4 -peptides lead one to question whether the constraint inherent in I stabilizes the 12-helical conformation.

 Received:
 June 15, 2016

 Published:
 August 16, 2016

This uncertainty must be resolved because constrained residues generally require greater synthetic effort than do flexible residues.

To address this question, we moved to a new family of α/γ -peptide octamers (1–4; Figure 2) tailored for aqueous solubility.

Figure 2. Structures of water-soluble α/γ -peptides.

Water is the least favorable among common solvents for Hbonded conformations such as the α -helix or β -sheets formed by conventional peptides or helices formed by β - or α/β -peptide foldamers.¹⁴ Presumably the strong H-bond competition provided by water molecules diminishes the ability of intramolecular H-bonds to stabilize secondary structure. Admixture of an alcohol cosolvent, such as methanol, enhances the population of internally H-bonded secondary structures for which there is an intrinsic propensity,^{14,15} but aqueous-alcohol mixtures do not guarantee folding. In contrast, chloroform allows intramolecular H-bonds to serve as a strong driving force for secondary structure formation. Qualitative comparisons based on data obtained in chloroform or crystal structures cannot decisively address the relative 12-helical propensities of I vs a γ^4 residue.

 α/γ -Peptide series 1–4 features both γ^4 residues and γ residue II (Figure 1), which is an analogue of I bearing a side chain that should be cationic at acidic pH. α/γ -Peptide 1 contains exclusively γ^4 residues, which are progressively replaced with II, from N- to C-terminus, in analogues 2–4. The γ residue side chain complement varies at one position across the α/γ -peptide series: 1 and 2 have a glutamate-like side chain at residue 4, but 3 and 4 have a lysine-like side chain at this position. This variation was intended to promote ¹H NMR resonance dispersion. The four α residues are invariant among 1–4. Two aromatic side chains (Tyr-5 and Phe-7) were included to enhance dispersion of ¹H NMR signals.

Initial 2D NMR studies were conducted in CD_3OH , in which 1-4 were highly soluble. ¹H resonances were unchanged between 0.1 and 3 mM, suggesting that aggregation state,

which we assume to be monomeric, does not vary in this range. In general, larger number of constrained γ residues correlated with improved chemical shift dispersion. In order to detect 12-helical folding, we focused on three types of backbone-to-backbone *i,i*+2 NOE that are known to be characteristic of this secondary structure (Table 1).^{10,13b}

Table 1. Summary of Crosspeaks Observed in CD₃OH^a

٤ 👝		a	H	Î
3. <mark>₿.(∬</mark>		, N	Υ.~	7
<u>v</u>	<u> </u>	<	b	

H-atom pair	12-helix distance (Å) ^b	NOE pairs	1	2	3	4
a	2.72	2…4	W	S	?	S
	2.70	4…6	?	Μ	S	S
	2.37	68	S	Μ	Μ	Μ
b	2.60 ^c	2…4	W	S	S	?
	2.69 ^c	4…6	?	W	Μ	S
	-	68	?	?	W	S
с	3.42	13	W	W	W	W
	3.64	35	VW	N.D.	W	W
	3.40	5…7	VW	VW	W	W

^{*a*}VW = very weak; W = weak; M = medium; S = strong; ? = ambiguous; N.D. = not detected. ^{*b*}From crystal structure of **P3** in ref 11c. ^{*c*}Distance to pseudoatom between diastereotopic H nuclei.

For fully flexible α/γ -peptide 1 in CD₃OH, partial chemical shift overlap precluded precise integration of several expected 12-helical crosspeaks in the 2D-ROESY spectrum. Nevertheless, unambiguous observation of six characteristic NOEs, uniformly distributed across 1, supported the conclusion that this α/γ -peptide is at least partially 12-helical in methanol (Table 1).

Improved ¹H signal dispersion enabled unambiguous assignment of almost all expected 12-helix NOEs for α/γ -peptide **2** in CD₃OH. The two 12-helical NOEs involving the cyclic γ residue (types **a** and **b** in Table 1) were more intense than those involving γ^4 residues. The 12-helical NOEs involving the α residues (type **c**) were generally not very intense; consistent with this trend, protons that would give rise to type **c** NOEs are further apart in available 12-helix structures than are protons that would give rise to type **a** or **b** NOEs.^{12c} α/γ -Peptide **3**, containing two cyclic γ residues, showed excellent chemical shift dispersion, and numerous 12-helical NOEs were detected. As seen for **2**, crosspeak intensity was lower for γ -to- γ NOEs involving exclusively γ^4 residues relative to such NOEs involving at least one cyclic γ residue.

 α/γ -Peptide 4, containing three cyclic γ residues, showed the most intense 12-helical crosspeaks among the four oligomers. Furthermore, numerous long-range NOEs between protons on side chains were detected that were not observed for 1–3. Collectively, the ROESY spectra for 1–4 in CD₃OH demonstrate a tendency of all α/γ -peptides to adopt the 12-helix conformation, but the trend of increasing crosspeak intensity and number with increasing number of $\gamma^4 \rightarrow II$ replacements suggests that the helical state becomes more stable as cyclic constraints are added.

We next characterized the folding behavior of α/γ -peptides 1– 4 in water. All four α/γ -peptides were highly soluble (>3 mM), and chemical shifts did not vary between 0.1 and 3 mM. The data obtained in this competitive environment support our conclusion that the cyclic constraint of residue II stabilizes the 12-helix.

For the fully flexible α/γ -peptide **1**, only two very weak *i*,*i*+2 ROESY crosspeaks consistent with the 12-helix conformation could be distinguished, with most others impossible to assign unambiguously because of poor resonance dispersion. For all ambiguous *i*,*i*+2 crosspeaks, the low intensity outside the overlapping region means that, at most, these NOEs were very weak. Three of the anticipated 12-helical *i*,*i*+2 crosspeaks would have occurred in relatively uncrowded regions of the 2D-ROESY spectrum but were not detected, which suggests that any tendency toward 12-helical folding by α/γ -peptide **1** is low in water. Three of the five nonsequential crosspeaks that could be unambiguously assigned were inconsistent with the 12-helix conformation (Figure 3). The *i*,*i*+2 NOEs of **1** in water fail to converge to a single mean structure and thus reflect a disordered conformational ensemble.¹⁶

Figure 3. Summary of detected ROESY crosspeaks between protons on nonadjacent residues in aqueous solution.

The aqueous 2D-ROESY spectra of α/γ -peptides 2-4 traced the formation of helicity with increasing cyclic constraint content. As seen in CD₃OH, the ¹H resonances became more dispersed with increasing content of cyclic γ residue II, permitting unambiguous detection of an increasing fraction of the expected 12-helical ROESY crosspeaks as the content of II grows. All observed i_i +2 ROESY crosspeaks for 2–4 involved at least one residue II or occurred between protons from α residues that are separated by a residue II. α/γ -Peptide 2, with a single residue II, illustrates the difference between cyclic and acyclic γ residues in terms of supporting local folding (Figure 4). The crosspeak of type **a** between II-2 and γ^4 Glu-4 was very intense, whereas the possible a crosspeak between γ^4 Glu-4 and γ^4 Lys-6 was not detected, even though this crosspeak would have occurred in an uncrowded region of the 2D spectrum. This trend continued for α/γ -peptides 3 and 4.

Figure 4. Excerpt of the 600 MHz ROESY spectrum of 3 mM α/γ -peptide 2 in 9:1 H₂O:D₂O, 100 mM acetate, pH 3.8 at 5 °C. *i*,*i*+2 NOEs indicated in red. Missing type **a** NOE shown with dashed line; observed type **a** NOE shown with unbroken line.

Results of NOE distance-restrained simulated annealing calculations¹⁷ suggest an increasingly well-defined helical conformation in methanol as γ^4 residues are replaced with constrained residues (Figure 5a). The calculations in water

Figure 5. Superposition of 10 lowest energy among 100 trial structures from simulated annealing calculations of 1-4. Mean pairwise backbone RMSD is shown below each structure. Sidechains omitted for clarity. (a) Calculated ensembles using distance restraints derived from (a) CD₃OH ROESY and (b) aqueous ROESY data.

suggest an even more pronounced disorder-to-order transition across the series 1–4 than is evident in methanol (Figure 5b vs 5a). The non-12-helical NOEs of 1 in water result in a variety of simulated conformations that do not correspond to a regular helix. For α/γ -peptides 2 and 3 in water, partial ordering only at the segments containing cyclic γ residues is observed, which is expected since there was a consistent lack of characteristic *i*,*i*+2 ROESY crosspeaks for the segments containing γ^4 residues. α/γ -Peptide 4 in water displays a relatively tight cluster of structures, each with the maximum number of 12-helix H-bonds. Increasing the number of $\gamma^4 \rightarrow II$ replacements across the series 1–4 improves the overlay of the NMR-derived structures with 12-helical conformations observed for crystalline α/γ -peptides, whether the oligomer crystallized contains constrained γ residue I or unconstrained γ^4 residues; this trend is illustrated for a specific α/γ^4 -peptide crystal structure in Figure 6.

Figure 6. Comparison of NMR structures of α/γ -peptides 1–4 with a 12-helix crystal structure from ref 11c. Black dots are backbone RMSDs of the 10 lowest-energy NMR structures. Mean pairwise RMSDs of each set of NMR structures vs the crystal structure are shown with red bars.

The 2D-NMR data presented here for α/γ -peptides 1–4, as well as other ¹H NMR data,¹⁸ support the hypothesis that the cyclic constraint in II stabilizes the 12-helix. γ^4 Residues, intrinsically more flexible than is II, have a modest propensity for 12-helix formation, as indicated by previous reports^{12,13} and by our NMR results in methanol. However, analysis of 1-4 in aqueous solution reveals a clear distinction between 12-helical propensities of II and γ^4 residues, which decisively addresses questions raised by recent studies.^{12,13} These results are significant since the impact of γ residue constraint on foldamer secondary structure has received very little scrutiny, in part because there has been very little previous study of γ -containing foldamers in aqueous solution.^{11c,19} Our demonstration that the preorganization inherent in γ residue II favors a specific secondary structure should encourage fundamental research on new foldamer building blocks that favor adoption of discrete and diverse conformations.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b06177.

Experimental details, including synthetic route to II; NMR spectra; HDX, VT-NMR, and *J*-coupling analysis; ROESY crosspeak assignments; CD data; comparison of I and γ^4 structure; and NMR calculation parameters (PDF)

AUTHOR INFORMATION

Corresponding Author

*gellman@chem.wisc.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by NSF grant CHE-1307365. NMR spectrometers were purchased with support from a generous gift by Paul J. Bender and from NIH (S10 OD012245).

REFERENCES

(1) (a) Appella, D. H.; Christianson, L. A.; Karle, I. L.; Powell, D. R.; Gellman, S. H. J. Am. Chem. Soc. **1996**, 118, 13071. (b) Appella, D. H.; Christianson, L. A.; Klein, D. A.; Powell, D. R.; Huang, X.; Barchi, J. J., Jr.; Gellman, S. H. Nature **1997**, 387, 381. (c) Hayen, A.; Schmitt, M. A.; Ngassa, F. N.; Thomasson, K. A.; Gellman, S. H. Angew. Chem., Int. Ed. **2004**, 43, 505. (d) De Pol, S.; Zorn, C.; Klein, C. D.; Zerbe, O.; Reiser, O. Angew. Chem., Int. Ed. **2004**, 43, 511. (e) Fernandes, C.; Faure, S.; Pereira, E.; Théry, V.; Declerck, V.; Guillot, R.; Aitken, D. J. Org. Lett. **2010**, 12, 3606. (f) Lee, M.; Shim, J.; Kang, P.; Choi, M. G.; Choi, S. H. Chem. Commun. **2016**, 52, 5950.

(2) (a) O'Neil, K. T.; DeGrado, W. F. Science 1990, 250, 646.
(b) Minor, D. L., Jr.; Kim, P. S. Nature 1994, 367, 660.

(3) Müller, M. M.; Windsor, M. A.; Pomerantz, W. C.; Gellman, S. H.; Hilvert, D. Angew. Chem., Int. Ed. **2009**, 48, 922.

(4) Ma, C. D.; Wang, C.; Acevedo-Vélez, C.; Gellman, S. H.; Abbott, N. L. *Nature* **2015**, *517*, 347.

(5) Johnson, L. M.; Gellman, S. H. Methods Enzymol. 2013, 523, 407.
(6) (a) Hanessian, S.; Luo, X.; Schaum, R.; Michnick, S. J. Am. Chem. Soc. 1998, 120, 8569. (b) Seebach, D.; Brenner, M.; Rueping, M.; Schweizer, B.; Jaun, B. Chem. Commun. 2001, 207. (c) Bouillère, F.; Thétiot-Laurent, S.; Kouklovsky, C.; Alezra, V. Amino Acids 2011, 41, 687. (d) Nodes, W. J.; Nutt, D. R.; Chippindale, A. M.; Cobb, A. J. A. J. Am. Chem. Soc. 2009, 131, 16016. (e) Pendem, N.; Nelli, Y. R.; Douat, C.; Fischer, L.; Laguerre, M.; Ennifar, E.; Kauffmann, B.; Guichard, G. Angew. Chem., Int. Ed. 2013, 52, 4147. (f) Mathieu, L.; Legrand, B.; Deng, C.; Vezenkov, L.; Wenger, E.; Didierjean, C.; Amblard, M.; Averlant-Petit, M. C.; Masurier, N.; Lisowski, V.; Martinez, J.; Maillard, L. T. Angew. Chem., Int. Ed. 2013, 52, 6006.

(7) (a) Grison, C. M.; Robin, S.; Aitken, D. J. *Chem. Commun.* **2015**, *51*, 16233. (b) Grison, C. M.; Robin, S.; Aitken, D. J. *Chem. Commun.* **2016**, *52*, 7802.

(8) (a) Ananda, K.; Vasudev, P. G.; Sengupta, A.; Raja, K. M.; Shamala, N.; Balaram, P. *J. Am. Chem. Soc.* **2005**, *127*, 16668. (b) Vasudev, P. G.; Ananda, K.; Chatterjee, S.; Aravinda, S.; Shamala, N.; Balaram, P. *J. Am. Chem. Soc.* **2007**, *129*, 4039.

(9) Vasudev, P. G.; Chatterjee, S.; Shamala, N.; Balaram, P. Acc. Chem. Res. 2009, 42, 1628.

(10) Guo, L.; Chi, Y.; Almeida, A. M.; Guzei, I. A.; Parker, B. K.; Gellman, S. H. J. Am. Chem. Soc. **2009**, 131, 16018.

(11) (a) Guo, L.; Almeida, A. M.; Zhang, W.; Reidenbach, A. G.; Choi, S. H.; Guzei, I. A.; Gellman, S. H. *J. Am. Chem. Soc.* 2010, *132*, 7868.
(b) Guo, L.; Zhang, W.; Reidenbach, A. G.; Giuliano, M. W.; Guzei, I. A.; Spencer, L. C.; Gellman, S. H. *Angew. Chem., Int. Ed.* 2011, *50*, 5843.
(c) Shin, Y. H.; Mortenson, D. E.; Satyshur, K. A.; Forest, K. T.; Gellman, S. H. *J. Am. Chem. Soc.* 2013, *135*, 8149.

(12) (a) Bandyopadhyay, A.; Gopi, H. N. Org. Lett. 2012, 14, 2770.
(b) Bandyopadhyay, A.; Jadhav, S. V.; Gopi, H. N. Chem. Commun.
2012, 48, 7170. (c) Jadhav, S. V.; Bandyopadhyay, A.; Gopi, H. N. Org. Biomol. Chem. 2013, 11, 509. (d) Jadhav, S. V.; Misra, R.; Singh, S. K.; Gopi, H. N. Chem. - Eur. J. 2013, 19, 16256. (e) Jadhav, S. V.; Misra, R.; Gopi, H. N. Chem. - Eur. J. 2014, 20, 16523.

(13) (a) Basuroy, K.; Dinesh, B.; Shamala, N.; Balaram, P. Angew. Chem., Int. Ed. 2012, 51, 8736. (b) Sonti, R.; Dinesh, B.; Basuroy, K.; Raghothama, S.; Shamala, N.; Balaram, P. Org. Lett. 2014, 16, 1656.

(14) (a) Appella, D. H.; Barchi, J. J.; Durell, S. R.; Gellman, S. H. J. Am. Chem. Soc. 1999, 121, 2309. (b) LePlae, P. R.; Fisk, J. D.; Porter, E. A.; Weisblum, B.; Gellman, S. H. J. Am. Chem. Soc. 2002, 124, 6820. (c) Vaz, E.; Pomerantz, W. C.; Geyer, M.; Gellman, S. H.; Brunsveld, L. ChemBioChem 2008, 9, 2254. (d) Schmitt, M. A.; Choi, S. H.; Guzei, I. A.; Gellman, S. H. J. Am. Chem. Soc. 2005, 127, 13130.

(15) Arvinte, T.; Drake, A. F. J. Biol. Chem. 1993, 268, 6408.

(16) Zagrovic, B.; van Gunsteren, W. F. Proteins: Struct., Funct., Genet. 2006, 63, 210.

(17) Brunger, A. T. Nat. Protoc. 2007, 2, 2728.

(18) See Supporting Information for discussion.

(19) Sawada, T.; Gellman, S. H. J. Am. Chem. Soc. 2011, 133, 7336.